Hydrosphere - Oceanography

Ocean Waters
80% of
Southern Hemisphere
60% of
Northern Hemisphere
70% of Earth’s surface

1350 million km³ water
average depth ~4 km
deepest 11.5 km

Subdivided
Oceans
Pacific largest
1/3 Earth’s surface
Atlantic
most coastline
Indian
Arctic
Southern
Antarctic
Seas, Gulf, Bay, ...
Baltic, Mediterranean,
Red, Black, Bering ...

Source of Water (and atmosphere)
Degassing release of gaseous and volatile substances from solids and liquids during crystallization and pressure or heating.
Water Vapor originally caught in gaseous atmosphere condensed when cooled

SALT dissolved from land deposited in sea highly soluble
100 gm seawater ⇒ 3.5 gm NaCl
if oceans evaporate ⇒ 70 m salt
major ions (by weight)
Cl⁻ 55% Na⁺ 31%
SO₄²⁻ 8% Mg²⁺ 4%

Temperature of Oceans
reacts slowly to air temperature changes
Surface: -2°C near Poles 30°C near Equator
Deep Ocean: > 2km 1-3°C worldwide
 reservoir of cold water
Thermocline - region 1.2 - 1.4 km depth, T changes quickly

Ocean Floor
 continental
 shelf
 slope
 rise
 abyssal plane
 trenches
 deepest parts

Tides caused by Moon (and Sun) gravitational forces on Earth
 Force of gravity between two objects is mutual
 Newton’s 3rd Law of Motion:
 for every action, there is an equal and opposite reaction
 Forces always come in pairs!

Earth and Moon attract
 (pull on) each other
 Gravity is an inverse square law
 it gets weaker as the distance R between objects increases

Moon pulls on Earth’s near side (A)
 more than on Earth’s center (B)
 AND
Moon pulls on Earth’s far side (C)
 less than on Earth’s center (B)

Earth’s surface bulges toward and away from Moon
Earth’s oceans bulge more than the crust.

Earth rotates beneath Moon
 continents pass through ocean bulges.
 Ocean level rises every 12 hrs, falls 6 hrs later - Tides
 2 high tides and 2 low tides each day.

Sun also pulls on Earth
 less difference between opposite sides than Moon
Size of tides related to Earth-Moon-Sun position: Moon’s phase

At New Moon and Full Moon
 Solar and Lunar - same direction
 Spring tides: large tidal bulges do not only occur in spring!
At 1st and 3rd Quarter Moons
 Solar and Lunar - perpendicular

01-18a
Neap tides: small tidal bulges

Surprising consequences of tides:

1) Earth’s gravity causes tidal bulges in Moon
 friction in flexing Moon rock
 slowed Moon’s rotation
 rotation period = orbital period
 explains why Moon always keeps same face toward Earth

2) As Earth rotates, it pulls oceans against Moon’s gravity
 friction between oceans and crust slowed Earth’s rotation
 by 0.0023 sec/century
 900 million years ago the day was 18 hours long!
 tidal bulges are out of phase

3) Earth rotation drags ocean bulge ahead of Moon’s direction
 Gravity between ocean bulge and Moon is mutual
 Ocean bulge pulls Moon forward in its orbit
 causes Moon to recede from Earth by 4 cm/year