PSC2121 Exam IV Review

Chemical Formula and Equations \(\text{H}_2\text{O}_2 \)

Molecular/Formula Mass (amu) - each element + total

% Composition

Gram Atomic/Molecular/Formula Mass

mass in gm \(\Rightarrow \) mole = Avogadro's Number \(N_A = 6.02 \times 10^{23} \)

like dozen

36 gm \(\text{H}_2\text{O} \) has how many molecules? atoms

Chemical Equations \(\text{Reactants} \rightarrow \text{Products} \)

Conservation of Mass
same # of atoms on each side
balance equation

Reaction Rates \(\text{A} + \text{B} \rightarrow \text{C} \quad k_f[A][B] \)

to increase rate:
powder - increase surface area
increase Temperature
activation energy
more high E collisions
increase concentration
better chance of finding partner
catalyst
enzyme - organic molecules

Equilibrium Reactions \(\text{A} + \text{B} \Leftrightarrow \text{C} + \text{D} \)

Dynamic Equilibrium
simultaneous forward and reverse reactions

\[K = \frac{k_f}{k_b} = \frac{[C][D]}{[A][B]} \]

Le Châtelier's Principle
\(K = \) constant
when stress imposed on an equilibrium system,
equilibrium shifts to minimize effect of the stress

Solutions
solvent - solute polar molecules
dilute - concentrated

Colloid
small particles, collections of molecules
remain suspended

Suspension
larger particles
eventually settle out

various combinations of solid, liquid, gas

identify:
- pure air, salt water, brass,
 - paint, blood, milk, ink,
 - dental amalgam, soda water

ACIDS - excess \(H^+ \)

BASES - excess \(OH^- \)

\[
[H^+][OH^-] = 10^{-14} \text{ mole}^2/\text{l}iters^2
\]

Base \(pH > 7 \) \[H^+ < [OH^-] \]
Neutral \(pH = 7 \) \[[H^+] = [OH^-] = 10^{-7} \text{ M} \]
Acid \(pH < 7 \) \[[H^+] > [OH^-] \]

EARTH \(R \sim 6400 \text{ km} \)

- **Crust** O 47% Si 28% density 2.8 gm/cc
- **Mantle**
- **Outer Core** liquid iron + Ni
- **Inner Core** solid iron + Ni \(\sim 13 \text{ gm/cc} \)

Vibrations - Earthquakes - Seismograph

- **Body Waves:** \(P \) longitudinal - fast
- **S** transverse - slow (not in liquid)

- **Surface Waves:** \(L \) sideways
 - \(R \) elliptic

ROCK mixture of minerals

- **Igneous** from molten magma
 - sedimentary deposits, contains fossils
 - metamorphic heat + pressure inside Earth

Volcanos - magma - lava

Plate Tectonics modern theory explains

- **Continental Drift** 250 MYA Pangea Panthalassa
 - Laurasia in north Gondwana in south
- **Seafloor Spreading - Mid-Atlantic ridge**

plate boundaries

- divergent Mid-Atlantic ridge
- convergent Himalayan mountains
- transcurrent/transform San Andreas fault

Age of Earth 4.6 billion years

- pre-Cambrian Eon from 3800 to 570 Million Years Ago
ended when 1st visible fossils found

OCEAN 71% of Earth’s surface 1350 million km3
- Pacific: largest, 1/3 of Earth’s surface
- Atlantic: growing, most coastline
- average depth 4km, deepest 11.5 km in trenches
- temperature 1-3°C worldwide below 2 km
- seawater 3.5% salt NaCl
 - ions: Cl$^-$ 55% Na$^+$ (31%)

Tides - Moon’s gravity elongates Earth and oceans
 - 2 high and 2 low tides each day
 - biggest: Moon-Earth-Sun in line, Spring Tide
 - lowest: Moon-Earth-Sun right angle, Neap Tide

ATMOSPHERE
- Exosphere
 - 500 km
- Thermosphere
 - 80 km
- Mesosphere
 - 50 km, Ionosphere: upward, ions reflect radio
- Stratosphere: ozone layer
 - 10 km
- Troposphere
 - 78% N$_2$, 21% O$_2$, 1% Ar

Greenhouse Effect regulates surface temperature
 - CO$_2$ and H$_2$O transparent to visible radiation
 - block IR, trap heat

Ozone Layer 30 km, blocks harmful UV radiation
 - CFC’s ChloroFluoroCarbons
 - with UV \Rightarrow free Cl
 - Cl + O$_3$ \rightarrow ClO + O$_2$ transparent to UV

Wind from high to low pressure
 - warm air expands \Rightarrow low pressure
 - cool air contracts \Rightarrow high pressure
 - near shore: heat capacity of water 4× land
 - Day: land warmer, wind onshore, from sea, sea breeze
 - Night: land cooler, wind offshore, toward sea, land breeze