HEAT random kinetic energy

ENTROPY measure of disorder

TEMPERATURE SCALES - conversion

\[^\circ C = \left(^\circ F - 32 \right) \times \left(\frac{5}{9} \right) \quad ^\circ F = \left(^\circ C \times \frac{9}{5} \right) + 32 \]

Absolute temperature \(K = ^\circ C + 273 \)

KINETIC THEORY matter = moving particles

\[KE = \frac{1}{2} m v^2 = 3 \times \frac{1}{2} k T \]

\(k = \text{Boltzman's constant} = 1.38 \times 10^{-23} \text{ J/K} \)

SPECIFIC HEAT add heat, \(T \) increases

\[H = mc(T_2 - T_1) = mc \Delta T \]

STATES of MATTER solid, liquid, gas

CHANGE of STATE

solid \(\Leftrightarrow \) liquid \(\quad H = mL_f \)

liquid \(\Leftrightarrow \) gas \(\quad H = mL_v \)

THERMAL EXPANSION all gases: \(V/V' = T/T' \)

solids depend on material: \(\Delta L = \alpha L(T_2 - T_1) = \alpha L \Delta T \)

THERMAL CONDUCTION

ENERGY CONVERSION

1st Law of Thermodynamics - in a closed system

- total \(E \) including heat is constant
- all other forms may be completely converted to heat

1 cal = 4.186 J

2nd Law of Thermodynamics - in a closed system

entropy (randomness) of total system increases

heat engine efficiency = \((T_H - T_C)/T_H \)

WAVE disturbance carries energy through medium

WAVE MOTION PULSE or PERIODIC

period \(T \) frequency \(f \) \(T = 1/f \)

WAVELENGTH \(\lambda \)

WAVE EQUATION \(v = \lambda/T = \lambda f \)

\(v_{\text{light}} = c = 3 \times 10^8 \text{ m/s} \quad v_{\text{sound}} = 340 \text{ m/s} \)

AMPLITUDE

TYPES TRANSVERSE LONGITUDINAL

DOPPLER EFFECT change in \(f \) and \(\lambda \) with moving source

STANDING WAVE boundary conditions

node = no motion antinode = maximum motion

FUNDAMENTAL FREQUENCY
SPEED OF LIGHT constant in vacuum
 same for all electromagnetic radiation
 in matter v < c index of refraction n = c/v > 1
REFLECTION angle of incidence = angle of reflection
REFRACTION bends at interface, depends on n
DIFFRACTION spreads around corners
DISPERSION prism, different f,λ different v
CONVERGING LENS
DIVERGING LENS
ELECTROMAGNETIC SPECTRUM
 radio, microwave, IR, visible, UV, X-ray, gamma ray
COLOR ⇒ f,λ Red-Green-Blue Yellow-Magenta-Cyan