Galaxies

2 lessons:

1) Galaxies interact with each other.

2) 90-99% of matter in universe is invisible

Edwin Hubble

Mt. Wilson Observatory (Caltech)

"tuning fork" classification

Elliptical (E)

E0 round E7 elongated

little gas and dust
few bright stars
mostly metal-poor
featureless clouds

M87 Giant Elliptical
surrounded by swarm of >500 globular clusters

Leo I dwarf elliptical
small, nearby galaxy
resolve individual stars

Spiral Galaxies (S)

contain dust, gas and hot, bright Population I stars
nuclear bulge
halos with Population II

SO galaxies have a disk
not making new stars
no bright stars to illuminate spiral arms

Sa galaxies
little gas and dust
larger nuclear bulges
tightly wound spiral arms
Sb galaxies
intermediate between
Sa and Sc
Milky Way
Sb,Sc hot, young bright
stars in arms

Sc galaxies
large clouds
of gas and dust
small nuclear bulges
very loosely wound arms

Barred Spiral Galaxies
spiral arms from ends of a bar
SBbc NGC3351 ⇒
SBb NGC1365

Irregular Galaxies
large chaotic clouds
mixed with young
and old stars

Large Magellanic Cloud ⇒
50 pc away

typically small and faint
IC4182 ⇒

Measuring the Properties of Galaxies
if we know distance
 can calculate size/diameter and luminosity
unit megaparsec (Mpc) = 10^6 pc = 3.26×10^6 ly = 2×10^{19} mi

Distance Indicators:
 extend calibration from nearest to furthest

Cepheids period-luminosity relation gives absolute luminosity
 relative luminosity gives distance
 most accurate
 useful only to about 50 million ly (15 Mpc)

Global clusters brightest stars have magnitude -10
 extends range

H II region cloud of ionized hydrogen around very hot stars
 not as useful because of variability

Planetary nebula - central star faint, re-emitted as visible
 calibrated from nearby galaxies like Andromeda

Supernovae explosions about same maximum brightness
 good to 1000 Mpc
 rare

Galaxy luminosity for different types
 very rough

look-back time
time in years equal to distance in light years
light reaching us now left source earlier

cluster 4-6 billion ly away
largest ~ Milky Way

The Hubble Law
Doppler Effect
 radial velocity $\Rightarrow f, \lambda$ shift
 measure λ of spectral lines
 \Rightarrow velocity
 $V_r = H d$

due to expansion of universe

Red Shift
HST: $H = 70$ km/s/Mpc

Mass most difficult quantity to determine

Rotation Curve method
Doppler effect
 \Rightarrow velocity profile
 \Rightarrow rotation periods
 \Rightarrow mass (like binary stars)
Cluster Method find largest velocities in a cluster of galaxies
 calculate mass needed to keep cluster bound
Both methods give Total Mass >> mass of visible matter
 Given size and luminosity, estimate visible matter mass
 from mass-luminosity relation for stars

Dark Matter
accounts for 90-99% of all mass!
 possibly observed by gravitational distortion
 simulation
 Not normal (cold) matter.
 Possibly WIMPs - Weakly Interacting Massive Particles
 not observed in laboratory

Clusters of Galaxies few - thousands, 2700 clusters in 4\times10^9 \text{ ly}

Rich Galaxy Clusters
 \text{> 1000 galaxies}
 mostly elliptical
 sphere d \sim 3 \text{ Mpc} (10^7 \text{ ly})

 Coma Cluster
 visible - Xray

Virgo Cluster
 nearest
 \text{> 2500 galaxies}
 relatively empty

Poor Galaxy Clusters
 \text{< 1000 galaxies}
 irregularly shaped

The Local Group
Collisions between Galaxies may dominate their evolution.

- Average separation: \(\sim 20 \times \text{diameter} \)
- Stars: \(\sim 10^7 \times \text{diameter} \)
- When galaxies collide, stars do not! But dust and gas interact, causing a burst of star formation.

The Mice ⇒ famous example

Collisions may last 100's of million of years. We see static pictures of a **dynamic process**. After collision, the galaxies may fall together and merge to form a new galaxy, an example of **galactic cannibalism**.

Antennae

NGC4038 and NGC4039

- Simulation from top
- Simulation from side

Ring Galaxies

- Bright nucleus with a bright ring due to a smaller galaxy.
passing perpendicular through larger

Evolution of Galaxies

Ellipticals
product of mergers triggered star formation used up gas and dust more in rich clusters

Spirals
few or no collisions disks are delicate retain gas and dust

Hubble Deep Field
10 day exposure most distant galaxies youngest more spirals smaller ellipticals