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EXCUTIVE SUMMARY 

The Moving Ahead for Progress in the 21st Century Act (MAP-21) includes freight planning and 
project delivery provisions. Specific goals were identified in the National Freight Policy (NFP) to 
increase economic competitiveness, efficiency, and productivity; reduce congestion; and enhance 
the safety, security, and resilience of the freight network. 

A reliable and accessible freight network enables the business to be competitive in the US. 
However, many urban roadways are facing challenges with traffic volumes being over capacity 
during peak periods. As a result, time and money are lost due to traffic congestion. Operational 
and design constraints such as interchange, steep grade, signalized intersection, work zone, 
merging, lane drop, and others, could contribute additional delays for commercial vehicles. 

This study leveraged our previous effort to measure and identify truck bottlenecks in the Twin 
Cities Metropolitan Area (TCMA) by using the National Freight Performance Management 
Research Data Set (NPMRDS). The research team worked with stakeholders to prioritize a list of 
key truck corridors in the TCMA. Monthly NPMRDS data were processed to measure travel time 
reliability and estimate truck delay at the corridor level and then to identify system impediments 
during peak hours. Performance measures, including truck mobility ratio, travel time reliability, 
and delay, were defined and computed using 24 months of NPMRDS data. 

On average, roadways with signalized or un-signalized intersections have a higher percentage of 
truck-to-car travel time ratio (TTR). On average, trucks travel an average of 10% slower than cars 
on freeways. 

A reliability measure was analyzed to evaluate the truck travel time reliability. The results indicate 
that the truck travel time in the PM peak period is less reliable than the travel time in the AM peak 
period. Similar to the TTR measure, roadways with signalized or un-signalized intersections are 
generally less reliable than freeways. 

The research team identified six truck bottlenecks in the TCMA during the PM peak period to 
further investigate the potential causes of the congestion. Among the six bottlenecks, I-94 WB at 
I-35W in Minneapolis has the highest truck delay per mile in the PM peak on an average weekday. 
Average truck delay in the PM peak in this segment is 570 hours per mile or 775 hours in total. 
We found insufficient capacity, increasing demand, roadway geometry, and density of weaving 
points in a roadway segment are the key causes of traffic congestion among the identified 
bottlenecks. 

We recommend using a solid white line on the main roadway to discourage drivers from changing 
lane near the bottlenecks as a less expensive solution. Traffic signs and real-time traveler 
information could also be placed at locations prior to approaching the bottlenecks. Ongoing 
performance monitoring using NPMRDS or other sources of traffic data is needed to support 
transportation planning and operation. 
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1.0 INTRODUCTION 

1.1 BACKGROUND 

Freight transportation provides a significant contribution to our nation’s economy. In the US the 
trucking industry represents the largest portion of domestic freight movement. Safe, efficient, and 
reliable trucking services are essential, not only to provide door-to-door freight transportation, but 
also to ensure the effective operation of other freight modes and facilities. Heavy commercial 
vehicles usually occupy more than twice the space of passenger vehicles on the roadway. Truck 
delays from traffic congestion or adverse weather conditions can have a significant impact on truck 
travel time reliability.  

A reliable and accessible freight network enables business in the Twin Cities Metropolitan Area 
(TCMA) to be competitive in the Upper Midwest region. Many urban roadways are facing 
challenges with traffic volumes being over capacity during peak periods. As a result, time and 
money are lost due to traffic congestion. Operational and design constraints such as interchange, 
steep grade, signalized intersection, work zone, merging, lane drop and others, could contribute 
additional delays for commercial vehicles. 

The Minnesota Department of Transportation (MnDOT) and the Metropolitan Council 
(MetCouncil) conducted a study in 2012 to evaluate the regional freight transportation system. A 
joint report, titled “Twin Cities Metropolitan Region Freight Study” [1] suggested a need to 
understand where and when trucks are most affected by highway congestion. Development of a 
framework for truck data collection and analysis is necessary to better understand the relationships 
between peak hour truck traffic and peak congestion. In addition, the report recognized the 
concerns of increasing freight shipping costs caused by congestion delays. Cost-effective and 
operationally focused solutions are needed to improve travel time reliability. Performance 
measures derived from this study can also be used to calibrate truck model parameters in 
MetCouncil’s transportation planning and forecasting model. 

A framework for truck data collection and analysis was recommended to better understand the 
relationships between truck traffic and congestion in peak periods. Building on our previous study 
to measure freight mobility and reliability along key freight corridors in the TCMA, this study 
leveraged our previous development to calculate the truck mobility measures using the National 
Performance Measurement Research Dataset (NPMRDS) from the USDOT.  

In 2013, the Federal Highway Administration (FHWA) announced the NPMRDS to support its 
Freight Performance Measurement (FPM) and urban congestion report programs. The NPMRDS 
includes probe vehicle-based travel time data (for both passenger and freight vehicles) at 5-minute 
intervals for all National Highway System (NHS) facilities. NPMRDS travel time is reported based 
on Traffic Message Channel (TMC) segments with link length varying from less than a mile to 
several miles. NPMRDS is intended for state agencies to measure system performance in meeting 
new federal performance management requirements. However, it may be difficult to extract 
information from the average travel time at 5-minute intervals for analyzing traffic dynamic at the 
per vehicle level and assessing the impact of signal delay within a relatively long TMC segment. 
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The author previously developed methodologies to measure truck mobility, delay, and reliability 
on key freight corridors in Minnesota using truck GPS data. In recent years, the author took 
advantage of the availability of NPMRDS by working with MnDOT to systematically measure 
truck travel time performances on National Highway System (NHS) and other major corridors.   

1.2 OBJECTIVES 

The research team previously used 24 months of NPMRDS data obtained from the MnDOT to 
measure truck mobility, reliability, and congestion at corridor level in the Twin Cities Metropolitan 
Area (TCMA). The goal of this study is to identify any operational bottlenecks or physical 
constraints based on the performance metrics. Trucking activities nearby congested areas were 
further examined to analyze traffic pattern, investigate possible causes of the recurring 
congestions, and recommend mitigation strategies. 

1.3 LITERATURE REVIEW 

In 2017, MnDOT freight office released a statewide freight system plan [2] with goals to identify 
significant freight system trends, needs and issues. The multi-model plan provided a framework 
that includes recommended freight policies, strategies and performance measures to guide decision 
making on future investments. The new plan will be developed as a policy, project development 
and investment strategy, in compliance with Moving Ahead for Progress in the 21st Century 
(MAP-21), highlighting best practices, Minnesota initiatives, cooperative partnership and 
associations [3]. 

One of the key elements of the MAP-21 Act is to focus on performance and outcome-based 
programs. The FAST Act also includes several goals focused on ensuring the safe, efficient, and 
reliable movement of freight. AASHTO also recommended performance measures in six areas 
(safety, pavement condition, bridges, freight, system performance, and congestion mitigation and 
air quality) to help state agencies meet new federal performance management requirements. 
Performance measures in categories such as safety, maintenance, mobility, reliability, congestion, 
accessibility, and environment, are recommended for the freight. 

Travel time reliability is one of the key measures of freight performance along interstates or 
interregional corridors in the nation [4 & 5]. Pu examines several reliability measures and 
recommended a median-based buffer index or a failure rate estimate as more appropriate to handle 
heavily skewed travel time distributions [6]. Gong & Fan [7 & 8] used a systematic approach that 
incorporates both congestion intensity and travel time reliability to evaluate freeway performance, 
identify and rank freeway bottlenecks. 

The FHWA has established a partnership with the American Transportation Research Institute 
(ATRI) and the trucking industry since 2002 to measure average truck travel speed on major 
freight-significant corridors in North America [9].  A spatial data processing methodology has 
been evaluated, refined, and assisted by Liao [10] to improve the effectiveness of generating 
Freight Performance Measures (FPM). Analyses of truck speed, volume and travel time by location 
help identify network impediments and variations of seasonal flow changes [11]. Derived vehicle 
speed and travel time from GPS and/or terrestrial wireless systems used by the trucking industry 
provide potential opportunities to support freight planning and operations on the surface 
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transportation system. In 2015, the FHWA has developed a guide [12] to provide best practices 
and approaches on several key areas of freight performance measurement; and to develop practical 
guidance in analyzing truck freight bottlenecks to State DOTs and metropolitan planning 
organizations (MPO). 

In Washington state, McCormack and Hallenbeck used 25 portable GPS data collection units with 
a 1-second polling rate to gather truck positioning data for measuring freight movements along 
freight significant corridors [13].  The study concluded that GPS data can be collected cost-
effectively and can provide an indication of roadway performance. Based on processed truck speed 
data, a route model including analyses of truck travel time, delay and reliability can be developed 
to better understand current freight network performance, freight origin to destination flows, and 
to study possible solutions to future freight demand growth [14].  

FHWA is leading the effort to assess and validate the appropriateness of using GPS data from 
commercial vehicles to derive mobility and reliability performance measures and to support 
congestion monitoring on the highway system. Four key factors, including average daily traffic 
(ADT) per lane, percent of the heavy vehicle, grade, and congestion level, were investigated. The 
preliminary findings indicated that (1) estimates of speed from Freight Performance Measurement 
(FPM) data are sufficiently accurate for performance measurement on most roadways in the United 
States, (2) FPM speed estimates show a consistent negative bias due to differences in operating 
characteristics of trucks and autos, and (3) grade and congestion have the greatest effect on FPM 
data accuracy among the four key factors evaluated [15]. 

In July 2013, the FHWA announced the NPMRDS to support its FPM and urban congestion report 
programs. The NPMRDS includes probe vehicle-based travel time data (for both passenger and 
freight vehicles) for every 5-minute interval for all National Highway System (NHS) facilities. 
The NPMRDS aims to support transportation agencies’ needs by obtaining a comprehensive and 
reliable set of data that can be broadly deployed for use in measuring, managing, and improving 
the transportation system in the U.S.   

Liao conducted a study to generate and analyze freight performance measures along 38 key freight 
corridors in the TCMA and four major freight corridors that connect the Twin Cities to three 
regional freight centers (St. Cloud, Mankato, and Rochester) outside the TCMA [16]. Several 
performance measures, such as truck mobility, delay, and reliability index, were identified. 
Statistical analyses were performed to derive performance measures by route, roadway segment 
(1-mile), and time of day. In addition to generating performance measures, the research team also 
identified key freight corridors by comparing the percentage of miles with Heavy Commercial 
Annual Average Daily Traffic (HCAADT). Truck bottlenecks were also identified and ranked 
based on hours of truck delay and the number of hours with speeds less than the target speeds (set 
by MnDOT) during the peak periods.  

For congestion mitigation, FHWA has initiated a localized bottleneck reduction program to focus 
on the causes, impacts, and potential solutions for recurring congestions. Several studies have been 
conducted to help agencies reduce localized bottleneck congestion [17-20].  

The cost of traffic mobility deficiencies can be estimated as a means of expressing the financial 
impact of congestion. The congestion cost measures can have utility to both transportation 
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decision-makers and system users when they accurately reflect the tangible costs of transportation 
use on congested facilities. Adams et al. evaluated the value of delay to commercial vehicle 
operators due to highway congestion by including factors such as direct operational cost, travel 
length, travel time variation, inventory holding, and warehouse management [21]. 

The annual Urban Mobility Scorecard [22] produced by the Texas Transportation Institute 
measures the costs of congestion at both the national and local levels. The 2015 report estimated 
that the overall cost of congestion in the US was $160 billion (using 2014 data) based on wasted 
fuel and lost productivity. In the Minneapolis-St. Paul, Minnesota, area, the cost of annual truck 
congestion was $327 million and the total congestion cost was $2.196 billion in 2014. The 
estimated cost of truck congestion in 2014 was $94 per hour.  

In addition, the ATRI has conducted an analysis to assess the operational costs of truck delays 
since 2008. Its recent update [23], An Analysis of the Operational Cost of Trucking: 2017 Update, 
reported that the total marginal costs for the industry across all sectors, fleet sizes and regions were 
$1.592 per mile and $63.66 per hour based on 2016 data. 

In 2016, NCHRP took the first step to incorporated truck travel time reliability into the truck freight 
benefit-cost estimation in order to better assess mobility projects and provide quantitative data for 
transportation project prioritization [24].  
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2.0 PERFORMANCE MEASURES 

The 2015 and 2016 (24 months) FHWA National Performance Management Research Data Set 
(NPMRDS) was received from MnDOT. The travel time data (in 5-min intervals) and truck 
volume data have been imported to our database in order to compute performance measures on the 
selected truck highway corridors. A GIS shapefile containing static roadway information was used 
to relate the travel time information to each roadway segment. A Traffic Message Channel (TMC) 
file contains TMC segment geometry information. A database file set includes average travel times 
of passenger, freight and combined for identified roadways geo-referenced to TMC segment IDs. 

The research team processed 24 months of NPMRDS data and generated monthly mobility and 
reliability measures for each TMC segment in the study area.  

Truck travel time ratio, reliability, and delay measures were computed for each time period as 
listed in Table 1.  

Table 1: Time Periods. 

Time Period Duration 
Weekday AM Peak 6AM – 10AM 
Weekday Mid-Day Peak 10AM – 4PM 
Weekday PM Peak 4PM – 8PM 
Weekend 6AM - 8PM 

 
The truck to car travel time ratio, truck travel time reliability and truck delay metrics were 
defined and discussed as follows. 

2.1 TRAVEL TIME RATIO (TTR) 

The travel time ratio (TTR) is defined as the truck travel time divided by the passenger vehicle 
travel time as expressed in Eq. 1. The travel time ratios for each TMC segment in each epoch (5-
minute interval) were computed in the AM (6-9AM), mid-day, and PM (4-8PM) periods, 
respectively, using the NPMRDS data. The TTR measure allows us to quickly identify time 
periods and locations where there is significant speed differential between the trucks and passenger 
vehicles. 
 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖𝑖𝑖 5 𝑚𝑚𝑚𝑚𝑚𝑚.
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖𝑖𝑖 5 𝑚𝑚𝑚𝑚𝑚𝑚.

 (1) 
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2.2 RELIABILITY MEASURE 

To quantify travel time reliability, a 95th percentile travel time is usually used to represent a near-
worst case travel scenario1. There are other measures that use 80th, 85th, 90th, or even 99th percentile 
travel time to quantify travel time reliability. We use 95th percentile based on the national 
performance measures [25]. The reliability measure, TTTR95, is defined as the 95th percentile 
truck travel time divided by the median truck travel time (50th percentile) in each TMC segment, 
as calculated using Eq. (2) for each time period. This reliability measure was chosen by MnDOT 
based on the “National Performance Measures for Congestion, Reliability, and Freight, and 
CMAQ Traffic Congestion” report [25] published by the FHWA.  
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇95 = 95𝑡𝑡ℎ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
50𝑡𝑡ℎ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

 (2) 
 

2.3 TRUCK DELAY 

The truck delay was computed by comparing the actual and targeted travel time in each TMC 
segment, as defined in Eq. (3). Truck delays were calculated for AM and PM peak periods on 
weekdays. The computed monthly delay result contains performance measures for AM and PM 
peak periods. The target speed or threshold speed in Eq. (3) is determined using the 
recommendation from the “Developing Twin Cities Arterial Mobility Performance Measures 
Using GPS Speed Data” report [26] (p.15-19). Roadway speed limit dataset was obtained from 
MnDOT to determine base free-flow speed (BFFS) for delay computation. The BFFS is 
determined based on the speed limit and guidance from the highway capacity manual [27] using 
the following equations. 
 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟 =  ∑ ∑ ∑ (𝑇𝑇𝑇𝑇𝑢𝑢𝑐𝑐𝑐𝑐_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ
 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

) × 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ℎ𝑟𝑟, 𝑡𝑡𝑡𝑡𝑡𝑡
12
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎℎ𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡   

 ∀    𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 > 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ
 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 (3.a) 

 
BFFS = 40 mph,    for posted speed limits < 40 mph 
  = Speed Limit + 7,  for posted speed limits 40 - 45 mph 
  = Speed Limit + 5,  for posted speed limits ≥ 50 mph 

   (3.b) 
 
The NPMRDS dataset does not include the sample size of the probe vehicles in each TMC. Truck 
volume data (HCAADT) and hourly truck volume distribution from our previous study [11] and 

                                                 
1 Travel Time Reliability: Make it There on Time, All the Time, 
https://ops.fhwa.dot.gov/publications/tt_reliability/TTR_Report.htm  

https://ops.fhwa.dot.gov/publications/tt_reliability/TTR_Report.htm
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additional data collection from five selected locations in the TCMA were used to estimate truck 
delays at each roadway segment during the AM and PM peak hours. Ideally, we would prefer to 
using Weigh-In-Motion (WIM) data to compute hourly truck distribution. However, there are only 
four WIM stations installed in the TCMA. Most of the WIM stations were installed outside the 
metropolitan areas.  

We selected five locations, as listed in Table 2, in the TCMA to collect vehicle classification counts 
over a period of several weeks. The collected classification data were used to validate hourly truck 
volume distribution for truck delay calculation. More details on hourly truck volume distribution 
at each location are included in Appendix A. 
 
Table 2: Truck Volume Data Collection Sites. 

Site Location # of 
Lanes Data Collection Period 2016 

HCAADT 
2016 

AADT 
1 US-169 at CR59 4 12/14/2017 – 02/06/2018 2,550 23,000 

2 US-169 at TH-282 4 12/06/2017 – 01/18/2018 2,450 21,000 

3 TH-13 at Lynn Ave. 4 11/03/2017 – 12/06/2017 4,400 48,500 

4 I-35E at McAndrews Road 4 11/01/2017 – 12/14/2017 2,500 55,000 

5 I-94 at N. Victoria St. 8 02/14/2018 – 04/24/2018 6,000 154,000 

 

2.4 TRUCK BOTTLENECK RANKING 

Our truck bottleneck ranking methodology is based on the estimated truck delays per mile. The 
delay-based approach is different from the bottleneck ranking methodology used by the American 
Transportation Research Institute (ATRI). The recent top-100 truck bottlenecks report2, published 
by ATRI in January 2018, included five truck bottlenecks in the TCMA (see Table 3). The ATRI’s 
truck bottlenecks are ranked by congestion values based on calculation of truck speed below free 
flow speed and volume [28]. 
 
Table 3: ATRI’s Top Truck Bottlenecks in Minnesota. 

Congestion 
Ranking (2017) Location Description Average Speed 

(MPH) 
Peak Average Speed 

(MPH) 

42 I-94 at US 52 42.9 35.2 
55 I-35W at I-494 47.2 38.2 
56 I-35W at I-94 38.4 28.8 
61 I-35E at I-94 43.5 35.7 

 
                                                 
2 The Nation’s Top 100 Truck Bottlenecks. http://atri-online.org/2018/01/25/2018-top-truck-bottleneck-list/  

http://atri-online.org/2018/01/25/2018-top-truck-bottleneck-list/
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Our truck bottleneck ranking is determined by computing the average daily truck delay in each 
TMC segment and dividing the delay over the segment length as expressed in Eq. (4). 
 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ ∑ �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ

 −  1
 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

� × 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ℎ𝑜𝑜𝑜𝑜𝑜𝑜,  𝑡𝑡𝑡𝑡𝑡𝑡
12
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ

24
ℎ𝑜𝑜𝑜𝑜𝑜𝑜    

 ∀    𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ

>  1
 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 (4) 
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3.0 DATA ANALYSIS 

The author worked with stakeholders to prioritize a list of key truck corridors in the TCMA. Figure 
1 displays a tiered based freight corridor network in the Twin Cities 7-county metro area. Weighted 
score of each corridor was computed by applying weights to average daily truck volumes (60%), 
truck percent of total traffic (20%), proximity to freight clusters (10%), and proximity to freight 
facilities (10%). Freight Clusters identified through analysis of intensity of freight-generating 
establishments in four sectors including consumer goods, natural resources, manufacturing, and 
transportation/logistics [29]. 

 
Figure 1: Tiered Based Truck Corridors with NPMRDS Data Coverage. 

MnDOT provided 24 months (Jan. 2015 – Dec. 2016) of FHWA’s National Performance 
Management Research Data Set (NPMRDS). The travel time data (in 5-min intervals) and a 
separate truck volume data from MnDOT were imported to a database in order to compute 
performance measures on the freight corridors. A GIS shapefile containing static roadway 
information was used to relate the travel time information to each roadway segment, i.e., a Traffic 
Message Channel (TMC) segment. 

Monthly NPMRDS data were processed to measure travel time reliability and estimate truck delay 
at the corridor level and then to identify system impediments during peak hours. Performance 
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measures, including truck mobility measure, travel time reliability, and delay, were computed and 
analyzed using the NPMRDS data. 

3.1 MOBILITY 

The travel time ratio (TTR) is defined as the truck travel time divided by the passenger vehicle 
travel time (Eq. 1). The travel time ratios for each TMC segment in each 5-minute interval were 
computed in the AM, mid-day, and PM peak periods using the 24-month NPMRDS data. For 
example, a TTR value of 1.0 means that, on average, the trucks and the passenger vehicles have 
the same travel time. Similarly, a TTR value of 1.2 means that, on average, truck travel time is 
20% longer than car travel time. 
 
Figure 2 displays the average median TTR and the corresponding standard deviation (SD) of TTR 
in the AM peak period in each month for the entire network. The network-wide monthly TTR in 
the AM peak period is relatively steady, around 1.3, over the 24-month period with an SD varying 
from 1 to 2.4. The average network-wide median TTR during mid-day is about 1.2 with an SD 
varying from 0.7 to 2.2 as shown in Figure 3. Similarly, the network-wide monthly median TTR 
in the PM peak period is around 1.3 over the 24-month period with an SD varying from 1 to 2.9 
as displayed in Figure 4. The variations of standard deviation of TTR in the PM peak is 
significantly larger than the variations in the AM and mid-day periods. This is probably caused by 
increasing trucking activities and dynamic nature of traffic congestion in the PM peak period. 
 
According to studies conducted by Puget Sound Regional Council [30], trucks travel by an average 
of 10% slower than cars on freeways. Based on the NPMRDS data in the Twin Cities metro area, 
the 24-month average of median travel time ratio in each epoch (a 5-minute interval) in a month 
by roadway type and time period is listed in Table 4. In general, trucks on the US and interstate 
highways have about 10% longer travel time than cars. On state highway, the TTR reaches to 1.2 
and 1.4 in the AM and PM peak periods, respectively. Trucks travel significantly slower than cars 
on county roads. The TTR on county road is around 1.5 during mid-day and the TTR spikes to 1.7 
and 1.9 in the AM and PM peak periods, respectively. The increase of TTR on county road may 
largely contributed by number of intersections in a TMC segment and delays at signalized 
intersections. 
 
It is suggested that a reasonable range of median TTR would be less than 1.2 for trucks traveling 
on highways. Highway TMC segments with TTR greater than 1.2 require further investigation to 
understand the possible causes. A reasonable range of TTR for arterials requires additional 
investigation since it could be affected by number of traffic lights in a TMC segment. 
 
Table 4: Average Median Travel Time Ratio by Roadway Type. 

Roadway Type AM Peak Mid-Day PM Peak 
U.S. Highway 1.07 1.06 1.09 
Interstate Highway 1.09 1.08 1.13 
MN State Highway 1.19 1.13 1.37 
County Road 1.68 1.49 1.85 
Others 1.28 1.20 1.29 
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Figure 2: Network-wide Monthly Median Travel Time Ratio in the AM Peak Period. 

 
Figure 3: Network-wide Monthly Median Travel Time Ratio in the Mid-Day Period. 

 
Figure 4: Network-wide Monthly Median Travel Time Ratio in the PM Peak Period. 
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The travel time ratio measure is further analyzed by route. Figure 5 displays the percent of miles 
with average TTR greater than or equal to 1.5 for AM, mid-day, and PM periods. In general, 
roadways with signalized or un-signalized intersections have higher percentage of truck to car 
travel time ratio. For example, the average truck travel time on 34% of county road 30 in Hennepin 
County is over 50% longer than the average passenger vehicle travel time in the PM peak. In the 
PM peak hours, the average truck travel time on 6.8% of I-94 roadway in the Twin Cities metro 
area is over 50% longer than the average passenger vehicle travel time. Similarly, the average truck 
travel time on 6.6% of I-394 roadway is over 50% longer than the average passenger vehicle travel 
time. 
 

 
Figure 5: Percent of Roadway Miles with TTR ≥ 1.5 by Time Period. 

3.2 TRAVEL TIME RELIABILITY 

The TTTR95 measure is calculated using Eq. (2) for each time period. However, only measures in 
the AM peak, mid-day, and PM peak hours are discussed here. Figure 6 displays the average 
TTTR95 and its corresponding standard deviation (SD) in the AM peak period in each month for 
the entire network. The network-wide monthly TTTR95 in the AM peak period is around 3.2 over 
the 24-month period with an SD ranging from 3.8 to 5.6. The average network-wide average 
TTTR95 in mid-day is about 2.9 with an SD ranging from 3.5 to 4.9 as shown in Figure 7. 
Similarly, the network-wide monthly median TTTR95 in the PM peak period, as shown in Figure 
8, is around 3.6 over the 24-month period with an SD varying from 3.9 to 6.7. 
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Figure 6: Network-wide Monthly Average TTTR95 in the AM Peak. 

 
Figure 7: Network-wide Monthly Average TTTR95 in Mid-Day. 

 
Figure 8: Network-wide Monthly Average TTTR95 in the PM Peak. 
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The TTTR95 measure is further analyzed by route. Figure 9 displays the percent of miles with 
average TTTR95 greater than 2.0 for AM, mid-day, and PM periods. In general, roadways with 
signalized or un-signalized intersections are less reliable than freeways. For example, the 95th 
percentile truck travel time on 80% of CR-42 is over twice as long as the average truck travel time 
in the PM peak. In the PM peak hours, the 95th percentile truck travel time on 75.5% of MN-65 
roadway in the Twin Cities metro area is over twice as long as the average truck travel time. 
Similarly, the 95th percentile truck travel time on 52.7% of I-394 roadway is over twice as long as 
the average truck vehicle travel time. 
 

 
Figure 9: Percent of Roadway Miles with TTTR95 ≥ 2.0 by Time Period. 

3.3 DELAY 

Truck delay was computed for each TMC segment in both AM and PM peak periods. Base free 
flow speed (BFFS) for commercial heavy vehicles, as defined in Eq. (3), was used to determine 
free flow truck travel time in each roadway segment. Observed truck travel time (from NPMRDS 
data) was compared to the free flow truck travel time to determine delay in each segment. Hourly 
truck volume distributions from our previous study [11] were used to estimate total truck delay at 
each TMC in peak periods. 
 
3.3.1 Truck Delay at Corridor Level 

Average daily truck delay in the AM peak at the corridor level during the 24-month period was 
analyzed. Figure 10 displays the average daily truck delay for each corridor with total delay greater 
than 1,000 hours. I-35W, I-94, US-169, I-494, and MN-55 have an average total truck delay over 
3,000 hours in the AM peak period. Similarly, Average daily truck delay in the PM peak at the 
corridor level during the 24-month period was also computed. Figure 11 displays the average daily 
truck delay for each corridor with total delay greater than 1,000 hours. I-94, I-35W, I-494, US-
169, I-694, and MN-55 have an average total truck delay over 3,000 hours in the PM peak period. 
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Figure 10: Average Daily Truck Delay (Over 1,000 hours) by Corridor in the AM Peak. 

 

 
Figure 11: Average Daily Truck Delay (Over 1,000 hours) by Corridor in the PM Peak. 

 
3.3.2 Truck Delay at TMC Segment Level 

Average daily truck delays were examined at six locations in the PM peak hours. Truck delays at 
these locations indicated some seasonal variations. Overall, the recurring truck delays at these 
locations are consistent throughout the 24-month study period. 

• I-494 EB E & W MN-100 – TMC 118N04131 & TMC 118N04133 
• I-94 WB W of US-169 – TMC 118P04153 
• I-394 EB W of I-94 – TMC 118P04354 
• I-35W NB S of Downtown Minneapolis – TMC 118P04237 
• I-94 WB at I-35W – TMC 118P04198 & TMC 118P04199 
• I-94 EB at Marion Street – TMC 118N04188 

 
A list of TMC segments (non-interchange locations) with recurring truck delays in the PM peak 
hours are listed in Table 5 as follows. TMC 118P04198 & TMC 118P04199 segments (I-94 WB 
at I-35W in Minneapolis) has the highest truck delay per mile in the PM peak on an average 
weekday. Average truck delay in the PM peak in this segment is 570 hours per mile, or 775 hours 
in total. TMC 118P04237 (I-35W NB south of Downtown Minneapolis) has the second highest 
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truck delay in the PM peak on an average weekday. Average truck delay in the PM peak in this 
segment is 523 hours per mile. TMC 118N04188 (I-94 EB west of Downtown St. Paul) has the 
third highest truck delay in the PM peak on a regular weekday. Average truck delay in the PM 
peak in this segment is 495 hours per mile, or 366 hours in total. 
 
Table 5: Top Congested TMC Segment in the PM Peak. 

Ranking TMC Description Length 
(Miles) 

Average 
Delay Per 

Mile (Hours) 

Total 
Segment 

Delay (Hours) 

1 118P04198 
118P04199 I-94 WB at I-35W 1.36 570 775 

2 118P04237 I-35W NB S of Downtown Minneapolis 1.00 523 523 
3 118N04188 I-94 EB at W of Downtown St. Paul 0.74 495 366 

4 118N04131 
118N04133 I-494 EB at MN-100 2.33 480 1,118 

5 118P04153 I-694/94 WB West of US-169 1.17 321 376 
6 118P04354 I-394 EB West of I-94 1.23 310 381 
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4.0 POTENTIAL CAUSES OF TRUCK BOTTLENECKS 

This chapter focuses on examining and evaluating the potential causes of truck congestion at six 
identified bottlenecks in the PM peak hours. The examination and evaluation were conducted by 
driving through the congested locations and reviewing video from MnDOT traffic cameras3 during 
PM peak. Table 6 lists the annual average daily truck and all traffic volume in 2016 at six locations 
where recurring truck congestion occurred during PM peak period. On average, heavy commercial 
vehicles consist of 5% of overall traffic at the selected sites. Among the six locations, the I-694/94 
WB west of US-169 has the highest HCAADT volume and truck volume percentage. I-394 EB 
west of I-94 has the lowest HCAADT volume and truck volume percentage in the PM peak period. 
Each of these truck bottlenecks is discussed in the following sections. 

Table 6: Truck Volume at Selected TMC Segments. 

# TMC Location Description Length 
(Miles) 

HCAADT 
2016 

AADT 
2016 

Heavy 
Truck 
% 

1 118P04198 
118P04199 I-94 WB at I-35W 1.36 6,800 155,000 4.4% 

2 118P04237 I-35W NB South of Downtown 
Minneapolis 1.0 7,500 193,000 3.9% 

3 118N04188 I-94 EB at West of Downtown St. Paul 0.74 7,500 142,500 5.3% 

4 118N04131 
118N04133 I-494 EB at MN-100 2.33 8,750 164,500 5.3% 

5 118P04153 I-694/94 WB West of US-169 1.17 10,000 118,000 8.5% 
6 118P04354 I-394 EB West of I-94 1.23 3,400 134,000 2.5% 

 

4.1 SITE #1 - I-94 WB AT I-35W 

The location of I-94 and I-35W interchange in Minneapolis is illustrated in Figure 12. The 2016 
HCAADT and AADT for I-94 WB traffic at this location (TMC 118P04198 & TMC 118P04199) 
were 6,800 and 155,000, respectively. Commercial trucks make up 4.4% of all vehicles traveling 
through this location. Recurring traffic congestion occurred in peak hours on a daily basis. Speed 
limit in the Lowry tunnel (A) in the west was reduced to 40 MPH due to horizontal and vertical 
curves. In addition, multiple paths of traffic weaving in (from I-35W NB and Downtown 
Minneapolis) and out (to local streets in Downtown Minneapolis) generate several potential points 
of disruption in this area (between point A and B as illustrated in Figure 12). Traffic congestion 
queue on I-94 WB often goes couple miles from the tunnel to the Mississippi River.  

In addition, heavy traffic going from I-94 WB to I-35W SB through a single lane off-ramp (B) 
often generates delays when I-35W SB is already congested. Insufficient capacity, roadway 
geometry, and density of on/off-ramps are the key causes of the congestion in this location. The 

                                                 
3 MnDOT. MN511 Traffic Cameras, https://hb.511mn.org/#roadReports?timeFrame=TODAY&layers=cameras  

https://hb.511mn.org/#roadReports?timeFrame=TODAY&layers=cameras
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truck mobility (TTR), reliability (TTTR95) and delays are plotted in Figure 13. The average TTR 
at this location is 1.36 with a standard deviation of 0.19. The average TTTR95 is 3.19 with a 
standard deviation of 0.3. The column chart in Figure 13 displays the daily average truck delay in 
the PM peak by month at this location. In 2015 & 2016, the average truck delay in the PM peak at 
this location ranges from 374 to 625 hours on a daily basis. 

 
Figure 12: Aerial Map of I-94 and I-35W Interchange in Minneapolis, MN. 

 

 
Figure 13: Average TTR, TTTR95, and Delay per Mile at I-94 WB & I-35W. 
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Figure 14 is a photo from MnDOT RTMC camera at I-94 and Cedar Ave in Minneapolis in the 
PM peak period. The I-94 WB and I-35W SB interchange is less than 1 mile downstream. 
 

 
Figure 14: Screenshot of MnDOT RTMC Camera at I-94 and Cedar Ave. 

 

4.2 SITE #2 - I-35W NB SOUTH OF DOWNTOWN MINNEAPOLIS 

The location of I-35W NB and I-94 interchange in south of Downtown Minneapolis is illustrated 
in Figure 15. The 2016 HCAADT and AADT for I-35W NB traffic at this location (TMC 
118P04237) were 7,500 and 193,000, respectively. Commercial trucks make up 3.9% of all 
vehicles traveling through this location. Recurring traffic congestion occurred in peak hours on a 
daily basis. Point A (as illustrated in Figure 15) is a weaving location for traffic coming from I-94 
EB to I-35W NB and leaving I-35W NB to I-94 EB. Another weaving point (I-35W NB & MN-
55/Hiawatha Ave.) with horizontal and vertical curves ahead of point A creates additional frictions 
to the traffic flow in this area. Speed limit on I-35W NB at the 90-degree turn (B) was reduced 
from 55 to 35 MPH due to the sharp horizontal curve. In addition, multiple paths of traffic weaving 
in (from 33rd and 38th Street) and out (to I-94 WB and Downtown Minneapolis) generate several 
potential points of disruption in this area (between C and D as illustrated in Figure 15). Traffic 
congestion queue on I-35W NB often grows beyond point D.  

Insufficient capacity, roadway geometry, and multiple weaving points at this location are the key 
causes of recurring congestion. The truck mobility (TTR), reliability (TTTR95) and delays are 
plotted in Figure 16. The average TTR at this location is 1.42 with a standard deviation of 0.17. 
The average TTTR95 is 3.91 with a standard deviation of 1.34. The truck travel time reliability 
measures in Jan. & Feb. 2015 were significantly higher (8.0 & 7.8) than the TTTR95 in the other 
months (see Figure 16). The unreliable truck travel time may be caused by winter weather or 
roadway incidents in Jan. & Feb. 2015. The column chart in Figure 16 indicates a seasonal pattern 
in the daily average truck delay in the PM peak by month at this roadway segment. In 2015 & 
2016, the average truck delay in the PM peak at this location ranges from 208 to 735 hours on a 
daily basis. In general, trucks traveling though the location in non-winter months (Apr. to Nov.) 
have longer travel time delay than traveling in winter months. 

I-94 WB 
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Figure 15: Aerial Map of I-35W and I-94 Interchange in Minneapolis, MN. 

 

 
Figure 16: Average TTR, TTTR95, and Delay per Mile at I-35W NB & I-94. 

 

0
100
200
300
400
500
600
700
800

0
1
2
3
4
5
6
7
8
9

20
15

 Ja
n

20
15

 F
eb

20
15

 M
ar

20
15

 A
pr

20
15

 M
ay

20
15

 Ju
n

20
15

 Ju
l

20
15

 A
ug

20
15

 S
ep

20
15

 O
ct

20
15

 N
ov

20
15

 D
ec

20
16

 Ja
n

20
16

 F
eb

20
16

 M
ar

20
16

 A
pr

20
16

 M
ay

20
16

 Ju
n

20
16

 Ju
l

20
16

 A
ug

20
16

 S
ep

20
16

 O
ct

20
16

 N
ov

20
16

 D
ec

De
la

y 
(H

ou
rs

)

TT
R 

/ T
TT

R9
5

Year Month

I-35W NB S of Downtown Minneapolis

Truck Delay Per Mile TTR TTTR95

Map Data @2018 Google 



 

23 
 

4.3 SITE #3 - I-94 EB WEST OF DOWNTOWN ST. PAUL 

The location of I-94 EB and I-35E interchange in west of Downtown St. Paul is illustrated in Figure 
17. The 2016 HCAADT and AADT for I-94 EB traffic at this location (TMC 118N04188) were 
7,500 and 142,500, respectively. Commercial trucks make up 5.3% of all vehicles traveling 
through this location. Recurring traffic congestion occurred in peak hours on a daily basis. Point 
A (as illustrated in Figure 17) is a weaving location for traffic coming from I-94 EB to US-52. 
Horizontal and vertical curves between point A & B also slow down the traffic flow in this area in 
rush hours. Speed limit between point A and C is reduced to 50 MPH due to multiple horizontal 
and vertical curves. In addition, multiple paths of traffic weaving in (from I-35E and Downtown 
St. Paul) and out (to I-35E NB, 7th Street and US-52) generate several potential points of disruption 
in this area (between A and C as illustrated in Figure 17). Traffic congestion queue on I-94 EB 
often grows beyond point C.  

 
Figure 17: Aerial Map of I-94 and I-35E Interchange in St. Paul, MN. 

 
Insufficient capacity, roadway geometry, and multiple weaving points at this location are the key 
causes of recurring congestion. The truck mobility (TTR), reliability (TTTR95) and delays are 
plotted in Figure 18. The average TTR at this location is 2.02 with a standard deviation of 0.34. 
On average, truck travel time on a weekday PM peak period is twice as long as the travel time of 
a passenger vehicle. The average TTTR95 is 4.15 with a standard deviation of 1.56. The truck 
travel time reliability measure in Mar. 2015 was significantly higher (9.9) than the TTTR95 in the 
other months (see Figure 18). The TTR in Mar. 2015 was relatively lower (1.17) than the TTR in 
the other months. The unreliable truck travel time may be caused by winter weather or roadway 

Map Data @2018 Google 
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incidents in Mar. 2015. The column chart in Figure 18 displays the daily average truck delay in 
the PM peak by month at this location. In 2015 & 2016, the average truck delay in the PM peak at 
this location ranges from 344 to 843 hours on a weekday. Figure 19 is a photo from MnDOT 
RTMC camera at I-94 and I-35E in St. Paul in the PM peak period. The I-94 EB and I-35E NB 
interchange is less than 1/2 mile downstream. 

 
Figure 18: Average TTR, TTTR95, and Delay per Mile at I-94 EB & I-35E. 

 

 
Figure 19: Screenshot of MnDOT RTMC Camera at I-94 and I-35E. 
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4.4 SITE #4 - I-494 EB AT MN-100 

The location of I-494 EB at MN-100 interchange in Bloomington is illustrated in Figure 20. The 
2016 HCAADT and AADT for I-494 EB traffic at this location (TMC 118N04131 & TMC 
118N04133) were 8,750 and 164,500, respectively. Commercial trucks make up 5.3% of all 
vehicles traveling through this location. Recurring traffic congestion occurred in peak hours on 
weekdays. Roadway geometry on I-494 from US-169 to I-35W is pretty straight with posted speed 
limit of 60 MPH. However, there are many office and retail business on both sides of the highway. 
There are six on/off-ramps and interchanges between I-35W and US-169. Many motorists try to 
get on/off/through this highway segment during the peak hours. Congestion queue on I-494 EB in 
the PM peak period often goes beyond point C on a regular weekday   

In addition, heavy traffic going from I-494 EB to I-35W SB through a single lane off-ramp (A) 
often generates delays when I-35W SB is usually busy. Insufficient capacity and density of 
weaving points in this location are the key causes of traffic delays. The truck mobility (TTR), 
reliability (TTTR95) and delays are plotted in Figure 21. The average TTR at this location is 1.36 
with a standard deviation of 0.16. The average TTTR95 is 3.23 with a standard deviation of 0.82. 
The truck travel time reliability measures in Jan. 2015 was relatively higher (5.9) than the TTTR95 
in the other months (see Figure 21). The unreliable truck travel time at this location may be related 
to winter weather. The column chart in Figure 21 displays the daily average truck delay in the PM 
peak by month at this location. In 2015 & 2016, the average truck delay in the PM peak at this 
location ranges from 314 to 701 hours on a daily basis. 

 
Figure 20: Aerial Map of I-494 and MN-100 in Bloomington, MN. 

 

Map Data @2018 Google 



 

26 
 

 
Figure 21: Average TTR, TTTR95, and Delay per Mile at I-494 EB at MN-100. 

 

Figure 22 is a photo from MnDOT RTMC camera at I-494 and MN-100 in Bloomington in the 
PM peak period on a weekday. The I-494 EB traffic is very busy during the PM peak period near 
the MN-100 interchange area. 

 
Figure 22: Screenshot of MnDOT RTMC Camera at I-494 and MN-100. 
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4.5 SITE #5 - I-694/94 WB WEST OF US-169 

The location of I-694 WB west of US-169 interchange in Maple Grove is illustrated in Figure 23. 
The 2016 HCAADT and AADT for I-94 EB traffic at this location (TMC 118P04153) were 10,000 
and 118,000, respectively. This location has the highest commercial truck volume as compared to 
the other sites discussed in this chapter. Commercial trucks make up 8.5% of all vehicles traveling 
through this location. Recurring traffic congestion occurred in peak hours on a regular basis. Point 
A (as illustrated in Figure 23) is a weaving location for traffic coming from I-494 NB to I-94 
toward St. Cloud. Horizontal and vertical curves for traffic leaving I-694 WB to I-494 SB (point 
D, splitting to I-494 SB and I-94 WB) could affect the traffic flow upstream. Speed limit between 
point A and C is 65 MPH. In addition, multiple paths of traffic weaving in (from US-169, I-494 
NB, and Hemlock Lane) and out (to I-494 SB and Hemlock Lane) generate several potential points 
of disruption in this area (between A and C as illustrated in Figure 23). Traffic congestion queue 
on I-694/94 WB often grows beyond point C. 

 
Figure 23: Aerial Map of I-694 at US-169 in Maple Grove, MN. 

 
Insufficient capacity and multiple weaving points at this location are the key causes of recurring 
congestion. The truck mobility (TTR), reliability (TTTR95) and delays are plotted in Figure 24. 
The average TTR at this location is 1.35 with a standard deviation of 0.26. On average, truck travel 
time on a weekday PM peak period is 35% longer than the travel time of a passenger vehicle.  

The average TTTR95 is 4.09 with a standard deviation of 1.44. The truck travel time reliability 
measures from May to Sep. 2016 were significantly lower (1.8) than the TTTR95 in the other 
months (see Figure 24). The research team found that I-494 was partially closed for rehabilitation 
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between I-394 and the I-94/I-494/I-694 interchange from mid-April 2016 through November 2016. 
In fact, the I-694 WB to I-494 SB ramp (point D in Figure 23) was closed for a period of time. 
Upstream traffic on I-694/94 WB was affected by the construction during the period. The reliable 
truck travel time may be caused by the downstream construction from mid Apr. to Nov. 2016. 

The column chart in Figure 24 displays the daily average truck delay in the PM peak by month at 
this location. In 2015 & 2016, the average truck delay in the PM peak at this location ranges from 
149 to 580 hours on a weekday. Truck congestion increased to almost twice as much the delay 
before the construction. However, the truck travel time reliability measure (TTTR95) decreased 
(more reliable) when the traffic became reliably slow during the I-494 rehabilitation period. 

 
Figure 24: Average TTR, TTTR95, and Delay per Mile at I-694 WB W of US-169. 

 

4.6 SITE #6 - I-394 EB WEST OF I-94 

The location of I-394 EB west of I-94 interchange in Minneapolis is illustrated in Figure 25. The 
2016 HCAADT and AADT for I-94 EB traffic at this location (TMC 118P04354) were 3,400 and 
134,000, respectively. This location has the lowest commercial truck volume as compared to the 
other locations discussed in this chapter. Commercial trucks make up only 2.5% of all vehicles 
traveling through this location. Recurring traffic congestion occurred in peak hours on a regular 
basis. Point A (as illustrated in Figure 25) is a merging location for traffic coming from I-394 EB 
(general & HOV lanes) to I-94 EB toward St. Paul. Horizontal and vertical curves between A and 
B on a single lane off-ramp really restrict the traffic flow upstream. Speed limit at off-ramp 
(between point A and B) is 30 MPH. In addition, multiple paths of traffic weaving in (from MN-
100 and Penn Ave.) and out (to I-94 WB and Downtown Minneapolis) generate several potential 
points of disruption in this area (between B and D as illustrated in Figure 25). Traffic congestion 
queue on I-394 EB often grows beyond point D in the PM peak hours.  

Insufficient capacity and roadway geometry near this location are the key causes of recurring 
congestion. The truck mobility (TTR), reliability (TTTR95) and delays are plotted in Figure 26. 
The average TTR at this location is 1.34 with a standard deviation of 0.25. On average, truck travel 
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time during a weekday PM peak period is 34% longer than the travel time of a passenger vehicle. 
The average TTTR95 is 7.6 with a standard deviation of 2.2. Truck travel time in this area is very 
unreliable with large variations throughout the 24-month study period. The unreliable truck travel 
time may be caused by the dynamic nature of congested traffic and driver behaviors. Many 
impatient drivers like to cut in the single lane off-ramp at the beginning of I-94 EB & WB off-
ramp split (location B in Figure 25). The column chart in Figure 26 displays the daily average 
truck delay in the PM peak by month at this location. In 2015 & 2016, the average truck delay in 
the PM peak at this location ranges from 137 to 566 hours on a weekday.  

 
Figure 25: Aerial Map of I-394 and I-94 in Minneapolis, MN. 

 

Figure 27 is a photo from MnDOT RTMC camera at I-394 and Penn Ave in Minneapolis during 
PM peak period on a weekday. The I-394 EB traffic is very busy during a regular weekday PM 
period.  
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Figure 26: Average TTR, TTTR95, and Delay per Mile at I-394 EB W of I-94. 

 

 
Figure 27: Screenshot of MnDOT RTMC Camera at I-394 and Penn Ave. 

 

  

0

100

200

300

400

500

600

0
2
4
6
8

10
12
14
16

20
15

 Ja
n

20
15

 F
eb

20
15

 M
ar

20
15

 A
pr

20
15

 M
ay

20
15

 Ju
n

20
15

 Ju
l

20
15

 A
ug

20
15

 S
ep

20
15

 O
ct

20
15

 N
ov

20
15

 D
ec

20
16

 Ja
n

20
16

 F
eb

20
16

 M
ar

20
16

 A
pr

20
16

 M
ay

20
16

 Ju
n

20
16

 Ju
l

20
16

 A
ug

20
16

 S
ep

20
16

 O
ct

20
16

 N
ov

20
16

 D
ec

De
la

y 
(H

ou
rs

)

TT
R 

/ T
TT

R9
5

Year Month

I-394 EB W of I-94

Truck Delay Per Mile TTR TTTR95

I-394 EB 

I-394 
HOV 
Lane 



 

31 
 

5.0 MITIGATION STRATEGIES 

In 2017, the NCHRP published a report that provides guidelines for identifying, classifying, 
evaluating, and mitigating truck bottlenecks. Options for mitigating truck bottlenecks were 
recommended for recurring and nonrecurring congestions [31 & 32]. The author’s previous effort 
[33] focused on the data analysis to identify truck bottlenecks. This project leverages the previous 
effort to investigate potential causes of truck bottlenecks and develop mitigation strategies on 
major truck highway corridors in the TCMA. 

Traditionally, adding more physical capacity to existing roadways has been the option and an 
important strategy to alleviate traffic congestion. However, it is increasingly difficult and 
expensive to add capacity in metropolitan areas due to the right-of-way, construction costs, and 
many other factors [34]. Another option is to use ITS technologies (e.g., real-time traveler 
information, variable speed limits, managed lanes, ramp metering, etc.) to operate existing 
roadway capacity more efficiently.  

Among the identified bottlenecks described in the previous chapter, we noticed an increasing 
number of vehicles weaving in and out of the bottleneck areas as traffic demand increases in peak 
periods. The increasing frequency of vehicle weaving or lane changing causes the mainline traffic 
to slow down. The disruption of traffic flow significantly impacts the heavy commercial vehicles 
that usually require a longer time to accelerate and decelerate. We also noticed that passenger 
vehicles on the adjacent lanes near a heavy commercial vehicle often make lane changes to take 
advantage of a gap in front of the truck in stop-and-go traffic conditions. This phenomenon often 
causes an additional delay for the trucks. 

As a short-term and less expensive solution, we suggested using a solid white line on the main 
roadway to discourage drivers from lane changing near the interchange bottlenecks. Hourdos et al. 
[35] extended a double white line at an on-ramp merge point to reduce the number of shockwaves 
on the mainline. Figure 28 & 29 illustrate an example of changing the dashed line into a solid white 
line at a highway weaving location with 2-lane exit lanes on the left shoulder. The purpose is to 
discourage motorist to make lane changes at the weaving point. 

 
Figure 28: Example of Solid White Line at a Highway Interchange. 

Solid white line 
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In addition, concrete barriers can be effective in separating the on/off-ramp traffic from the 
mainline and combining 2 conflict points (merging and diverging) into one merging point. For 
example, a Jersey barrier, as shown in Figure 30(a), was built to separate 2 on-ramp merging traffic 
and extend the merging point to the mainline about half-mile downstream at I-94 EB in Rogers, 
MN. Similarly, a low profile concrete barrier, as shown in Figure 30(b), was placed to separate 
on/off-ramp traffic at I-35W NB and I-494 interchange area.  

Traffic signs and real-time traveler information can be placed at locations prior to approaching the 
bottlenecks (See Figure 31). For example, MnDOT has painted solid white lines for lane control 
at a few merging and diverging areas on highways and work zones in addition to using solid white 
lines inside the Lowry tunnel in Minneapolis.  

The mid/long-term solution requires capacity expansion, reduce number of merging and diverging 
points near a bottleneck, and deploying ITS technology to provide timely traveler information to 
reduce congestion at bottlenecks. Although, it is debatable that the solid white lines are often 
ignored by motorists. The recommended mitigation strategies require the cooperation from the 
motorists. The public agency will need to continue monitor performance and track progress as an 
ongoing effort to provide safe and efficient services for the public. 

 

 
(a) 

Change highlighted area 
into a solid white line 
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(b) 

Figure 29: Illustration of Changing Dashed Lines into a Solid White Line. 
 

 
(a) I-94 EB at Highway 101 in Rogers, MN 
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(b) I-35W NB at I-494 Interchange in Bloomington, MN 

Figure 30: Example of Barrier to Separate On/Off-Ramp Traffic from Mainline 
 
 

 
Figure 31: Example of Real-time Traveler’s Information Prior to a Bottleneck. 
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6.0 SUMMARY 

Freight transportation provides a significant contribution to our nation’s economy. The USDOT 
has identified and recommended critical performance measures, methodologies and standards for 
data collection, potential issues related to deployment, and usability of performance measures in 
addressing issues at local, state, and federal levels. 

A reliable and accessible freight network enables business in Twin Cities to be competitive in the 
Upper Midwest region. Many urban roadways are facing challenges with traffic volumes being 
over capacity during peak periods. As a result, time and money are lost due to traffic congestion. 
Operational and design constraints such as interchange, steep grade, signalized intersection, work 
zone, merging, lane drop and others, could contribute additional delays for commercial vehicles. 

The research team worked with stakeholders to prioritize a list of key truck corridors in the Twin 
Cities Metro Area (TCMA). Monthly NPMRDS data were processed to measure travel time 
reliability and estimate truck delay at the corridor level and then to identify system impediments 
during peak hours. Performance measures, including truck mobility ratio, travel time reliability, 
and delay, were defined and computed using 24 months of NPMRDS data. 

On average, roadways with signalized or un-signalized intersections have a higher percentage of 
truck-to-car travel time ratio (TTR). On average, trucks travel an average of 10%more slowly than 
cars on freeways. As listed in Table 4, trucks on the US and interstate highways have about a 10% 
longer travel time than cars. On state highways, the TTR reaches 1.2 and 1.4 in the AM and PM 
peak periods, respectively. Trucks travel significantly slower than cars on county roads. The TTR 
on county roads is around 1.5 during mid-day and spikes to 1.7 and 1.9 in the AM and PM peak 
periods, respectively. The increase of TTR on county roads may largely be due to the number of 
intersections in a TMC segment and delays at signalized intersections. 

For example, the average truck travel time on 34% of county road 30 in Hennepin County is over 
50% longer than the average passenger vehicle travel time in the PM peak. In the PM peak hours, 
the average truck travel time on 6.8% of the I-94 roadway in the TCMA is over 50% longer than 
the average passenger vehicle travel time. Similarly, the average truck travel time on 6.6% of I-
394 roadway is over 50% longer than the average passenger vehicle travel time. 

A reliability measure was processed and analyzed to evaluate the truck travel time reliability. The 
results indicate that the truck travel time in the PM peak period is less reliable than the travel time 
in the AM peak period. Similar to the TTR measure, roadways with signalized or un-signalized 
intersections are generally less reliable than freeways. At the corridor level, the TTTR95 measure 
is much higher than the RI95 measure. The variability of TTTR95 is also higher than the RI95 
measure. This is mostly caused by the long-tail distribution of truck travel time from the NPMRDS 
data. 

For example, the 95th percentile truck travel time on 80% of CR-42 roadway is over twice as long 
as the average truck travel time in the PM peak. In the PM peak hours, the 95th percentile truck 
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travel time on 75.5% of MN-65 roadway is over twice as long as the average truck travel time. 
Similarly, the 95th percentile truck travel time on 52.7% of I-394 roadway is over twice as long as 
the average truck vehicle travel time. 

We identified six truck bottlenecks in the TCMA during the PM peak period to further investigate 
the potential causes of the congestion. Among the six bottlenecks, I-94 WB at I-35W in 
Minneapolis has the highest truck delay per mile in the PM peak on an average weekday. Average 
truck delay in the PM peak in this segment is 570 hours per mile or 775 hours in total. We found 
insufficient capacity, increasing demand, roadway geometry, and density of weaving points in a 
roadway segment are the key causes of traffic congestion among the identified bottlenecks. 

We recommend painting solid white lines on the main roadway to discourage drivers from 
changing lane near the bottlenecks as a less expensive solution. Traffic signs and real-time traveler 
information could also be placed at locations prior to approaching the bottlenecks. Ongoing 
performance monitoring using NPMRDS or other sources of traffic data is needed to support 
transportation planning and operation.
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APPENDIX A 

HOURLY TRUCK VOLUME DISTRIBUTION 
 

Hourly truck volume distributions (Figure A-1 to A-5) were computed from truck volume data 
collected at five locations in the Twin Cities Metro Area (TCMA) using loop signature 
technology at existing loop detection stations. As shown in Figure A-2, significantly higher 
trucking activity (over 10%) occurred in the AM and PM peak hours in the US-169 NB direction 
near the TH-282 area.  
 

 
Figure A-1: Hourly Truck Volume Distribution on US-169 at CR-59. 

 

 
Figure A-2: Hourly Truck Volume Distribution on US-169 at TH-282. 
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Figure A-3: Hourly Truck Volume Distribution on TH-13 at Lynn Ave. 

 

 
Figure A-4: Hourly Truck Volume Distribution on I-35E at McAndrews Rd. 
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Figure A-5: Hourly Truck Volume Distribution on I-94 at Victoria St. 

 
We also obtained 12 months of WIM data from MnDOT to examine the hourly truck volume 
distribution. Figure A-6 displays the hourly truck volume distribution at four WIM stations in the 
TCMA. WIM station 36 is located on MN-36 in the City of Lake Elmo in Washington County. 
WIM station 37 is located on I-94 WB in the City of Otsego in Wright County. WIM 40 is 
located on US-52 in the City of West St. Paul in Dakota County. And WIM station 42 is located 
in the City of Cottage Grove in Washington County.  
 

 
Figure A-6: Hourly Truck Volume Distribution at Four WIM Stations. 
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